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High Flux Current Ignition Literature @i

= |gnition Handbook (Babruskas, 2003)

= Cites Glasstone and Dolan (1977) as main source Ignition
Handbook

= We believe their ignition data are based on the historical
data from the 50’s-60’s.

= SFPE Handbook (Chapter 11, third edition)

= |gnition section written by Kanury, heavily references
Martin’s work

= “Martin and his collaborators had honed the technique of
o . . Fire Protection
ignition measurement to such a fine art that their measured Engineering
ignition thresholds of drapes, typing paper, dry rotted wood
and leaves were included in the newer printing of Glasstone’s

Effects of Nuclear Weapons” —Kanury, A. M. (2009). SFPE Classic
Paper Review: Diffusion-Controlled Ignition of Cellulosic Materials by Intense
Radiant Energy by Stanley B. Martin. Journal of Fire Protection Engineering,
19(2), 125-131.

=  Most current recommendations for high flux ignition go
back to the same dated sources (Martin et al.)




Sandia
m National _
Laboratories

Martin et al. (1965) Ignition Regimes

= Stan Martin summarized his ignition data for blackened cellulose in terms
of flux/fluence regimes
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Prior Martin Ignition Data

Normalized Fluence (K)

Emerging Data for More Materials

Recent Ignition from High Heat Flux

Normalized irradiance (i)

Ignition Thresholds- Cellulosic
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New Testing using Concentrated

Ignition Thresholds- Synthetic
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_mostly cellulose Solar Power (>2e6 W/mz)
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=Orange = historical data

=Solid black = new
ignition thresholds

=0Open = non-ignition




Martin’s Ignition Model: Critical
Surface Temp.
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n Engerer, et al., AIAA/ASME Joint
Q* — aQ Thermophys. H. Transf. Conf., Atlanta,
f— L — " pc,L GA, 2018. DOI: 10.2514/6.2018-3764
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Proposed Cable Ignition Model ) .
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Majority of Historical Data

Martin’s Test Apparatus
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Fig. 4. Apparatus for the measurement of temperatures of the irradiated surface of cellulose.
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